skip to main content


Search for: All records

Creators/Authors contains: "Gao, Jianfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same cluster. We make three contributions. First, through analysis of data from real-world video streaming sessions, we show (i) apriori clustering prevents learning from related clusters; and (ii) factors such as the Time to First Byte (TTFB) are key components of chunk download times but not easily incorporated into existing prediction approaches. Second, we propose Xatu, a new prediction approach that jointly learns a neural network sequence model with an interpretable automatic session clustering method. Xatu learns clustering rules across all sessions it deems relevant, and models sequences with multiple chunk-dependent features (e.g., TTFB) rather than just throughput. Third, evaluations using the above datasets and emulation experiments show that Xatu significantly improves prediction accuracies by 23.8% relative to CS2P (a state-of-the-art predictor). We show Xatu provides substantial performance benefits when integrated with multiple ABR algorithms including MPC (a well studied ABR algorithm), and FuguABR (a recent algorithm using stochastic control) relative to their default predictors (CS2P and a fully connected neural network respectively). Further, Xatu combined with MPC outperforms Pensieve, an ABR based on deep reinforcement learning. 
    more » « less
  2. The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same cluster. We make three contributions. First, through analysis of data from real-world video streaming sessions, we show (i) apriori clustering prevents learning from related clusters; and (ii) factors such as the Time to First Byte (TTFB) are key components of chunk download times but not easily incorporated into existing prediction approaches. Second, we propose Xatu, a new prediction approach that jointly learns a neural network sequence model with an interpretable automatic session clustering method. Xatu learns clustering rules across all sessions it deems relevant, and models sequences with multiple chunk-dependent features (e.g., TTFB) rather than just throughput. Third, evaluations using the above datasets and emulation experiments show that Xatu significantly improves prediction accuracies by 23.8% relative to CS2P (a state-of-the-art predictor). We show Xatu provides substantial performance benefits when integrated with multiple ABR algorithms including MPC (a well studied ABR algorithm), and FuguABR (a recent algorithm using stochastic control) relative to their default predictors (CS2P and a fully connected neural network respectively). Further, Xatu combined with MPC outperforms Pensieve, an ABR based on deep reinforcement learning. 
    more » « less
  3. We consider the task of learning a parametric Continuous Time Markov Chain (CTMC) sequence model without examples of sequences, where the training data consists entirely of aggregate steady-state statistics. Making the problem harder, we assume that the states we wish to predict are unobserved in the training data. Specifically, given a parametric model over the transition rates of a CTMC and some known transition rates, we wish to extrapolate its steady state distribution to states that are unobserved. A technical roadblock to learn a CTMC from its steady state has been that the chain rule to compute gradients will not work over the arbitrarily long sequences necessary to reach steady state —from where the aggregate statistics are sampled. To overcome this optimization challenge, we propose ∞-SGD, a principled stochastic gradient descent method that uses randomly-stopped estimators to avoid infinite sums required by the steady state computation, while learning even when only a subset of the CTMC states can be observed. We apply ∞-SGD to a real-world testbed and synthetic experiments showcasing its accuracy, ability to extrapolate the steady state distribution to unobserved states under unobserved conditions (heavy loads, when training under light loads), and succeeding in difficult scenarios where even a tailor-made extension of existing methods fails. 
    more » « less